Colle du 14 octobre : Séries numériques

Exercice 0 : Tous les exercices de la semaine précédente.

Questions de cours

Question de cours 1 : Critère spécial pour les séries alternée, majoration du reste.

Question de cours 2 : Critère de Cauchy pour les séries.

Question de cours 3 : Théorèmes de sommation de relations de comparaison.

5.2Exercices

Exercice 1 : Étudier la nature de la série $\sin(\pi(n^3 + n^{3/2})^{1/3})$.

Exercice 2 : Donner la nature de la série $\sum (-1)^n \left(e - \left(1 + \frac{1}{n}\right)^n\right)$.

Exercice 3 : Quelle est la nature de la série $\sum \frac{(-1)^{[\ln n]}}{n}$?

Exercice 4: Soit σ une permutation de \mathbb{N}^* .

1. Quelle est la nature de la série $\sum \frac{\sigma(n)}{n^2 \ln n}$?

2. Même question pour $\sum \frac{\sigma(n)}{n^3}$.

Exercice 5 : Soit $(a_n)_n$ une suite réelle telle que $a_n \sum_{i=1}^n a_i^2 \to 1$. Donner un équivalent de a_n .

Exercice 6 : Soit a > 0. Donner la nature de la série $\sum \frac{(-1)^n}{\sqrt{n^a + (-1)^n}}$.

Exercice 7 : Donner la nature de $\sum \frac{(-1)^n}{n^{3/4} + \cos n}$.

Exercice 8:1. Calculer $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$. 2. On pose $R_n = \sum_{k=n}^{\infty} \frac{(-1)^{k+1}}{k}$. Quelle est la nature des séries $\sum R_n$ et $\sum R_n^2$. 3. Soit $u_n = \ln(\exp(\sum_{k=1}^n \frac{(-1)^{k+1}}{k}) - 1)$. Quelle est la nature de la série $\sum u_n$?